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gUPPE Demonstration gUPPE-b: Leaky Waveguides Core-confined BPM: Slot Waveguide
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eqL:]a"ELonf(%UPI_DE) [1t’]c ;ke)mthandle simulation regimes waveguide: mid-infrared pulse. (allows efficient computation at small kR values) y - .
Wi e following attributes: | s . ) ilicon nitride
. L *Inner radius r = 200 um | Boundary ;onc;lltlon derived at a ]| slot waveauide for
1) Structures with strong refractive index contrasts. _ core-cladding interface [3] | O |
2) Directional long-distance wave propagation. *Ar pressurized to 20 atm - ~ Sicoersion relations | Sid supercontinuum generation
3) Strong waveform reshaping (time and space). « Core-cladding index difference n_ - . !32 : - Sio, — on chip.
4) Extreme spectral dynamics; resulting spectra Linear Propagation ~ W20 g2 2 W ng T :
often encompass more than an octave in frequency. —e T 1= 2 ; KT I 2 0:8—_ ::'/\"*,h,—'ﬁ‘a‘ j E”gi
A capillary wavequide is studied with gUPPE = gUPPE UPPE ¢ ¢ A = 1lum s
. . i — 1. g . »ui T .f; ; i; i‘*.-
and comp.are.d to.the typlcal_method, which expands compared ParaX|a.I | <k I :&\/nz _nz Fundamental TM mode Soal 1Y
the electric field into approximate leaky modes. — — approximation: ! 0 ° cl fiald calculation I Y S N &
Remaining demonstrations simplify the gUPPE 5 E J:Tc])eﬁgzl of N b d diti oL N
. . . . O o ! | | | !
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* Material interfaces parallel to propagation direction 200 S | N o . focused at the modal superposition at
) , — ALMEx with losses - X | T | entrance of the A =1um
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Excitation of high-order trailing portion of the pulse. local pulse time [fs]
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