
Classical Model of Quantum Noise with the FDTD Method

Jonathan Andreasen1,2, Hui Cao1,2, Allen Taflove3, Prem Kumar1,3, and Chang-qi Cao4

1Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA, 
j-andreasen@northwestern.edu

2Department of Applied Physics, Yale University, P.O. Box 208284, New Haven, CT 06520, USA, 
hui.cao@yale.edu

3Department of Electrical Engineering and Computer Science, Northwestern University, 2145 Sheridan Road, 
Evanston, IL 60208, USA, taflove@eecs.northwestern.edu, kumarp@northwestern.edu

4Department of Physics, Peking University, Beijing 100871, People's Republic of China, cqcao@pku.edu.cn

Abstract

Numerical  models  based  on  the  finite-difference  time-domain  (FDTD)  method have  been  developed  to 
simulate thermal noise and spontaneous emission. Both types of noise may have effects on optical systems. Though 
their origin lies in quantum mechanics, macroscopic systems in which the discreteness of light can be ignored make 
it possible to simulate the noise using classical numbers. The absorbing boundary of a one-dimensional (1D) FDTD 
grid  absorbs  all  incident  fields  and  thus,  can  be  considered  a  blackbody.  For  a  blackbody  to  be  in  thermal 
equilibrium with its surroundings it must also radiate back into the system. Therefore, the extreme points of the 1D 
grid act as sources of thermal radiation penetrating into the grid. This method is applied to the study of a 1D leaky 
optical cavity in transition from the Markovian to a non-Markovian regime. The appropriate spectral properties are 
given to the noise and the standard result of the quantum Langevin equation is recovered. In a separate treatment, 
spontaneous emission, which is important to consider in laser dynamics, is simulated through a 1D FDTD based 
Maxwell-Bloch system. The coupling between the Maxwell and Bloch equations is achieved via a weakly coupled 
splitting scheme. This model is based on the c-number stochastic differential equations found through the use of the 
positive P representation. We validate our method by reproducing previous numerical results of superfluorescence. 
The gain atoms are initially inverted, so inversion-dependent contributions to the stochastic sources are dominant 
and thus the only sources of noise considered.

1. Introduction

The  finite-difference  time-domain  (FDTD)  method  [1]  has  been  extensively  used  in  solving  Maxwell's 
equations for dynamic electromagnetic (EM) fields. The incorporation of auxiliary differential equations, such as the 
rate equations for atomic populations [2] and the Maxwell-Bloch equations for the density-of-states of atoms [3], has 
lead to comprehensive studies of light-matter interactions. Although the FDTD method has become a powerful tool 
in computational electrodynamics, it has been applied mostly to classical or semiclassical problems. The light field 
in an open cavity experiences quantum fluctuations, however, because of its coupling to external reservoirs. The first 
part of this paper models this quantum noise for the cavity field as a classical noise and incorporates it into FDTD.

Recently, quantum fluctuations due to the spontaneous emission of atoms were introduced to the Maxwell-
Bloch equations [4].  This formalism has the advantage of being able to model gain-guided lasers and unstable 
resonators but employs the slowly-varying-envelope approximation. This approximation will not always hold when 
considering  systems  like  chaotic  open  cavities.  An FDTD simulation  of  microcavity  lasers  including  quantum 
fluctuations was also done recently [5]. White Gaussian noise was added as a source to the electric field at every 
grid point. The noise amplitude, however, is strictly only related to the excited state's lifetime. The dephasing time 
which is much shorter than the excited state's lifetime will induce more noise. Thus, in the second part of this paper 
we develop a more complete method of incorporating spontaneous emission into FDTD. 

One  advantage  of  the  FDTD  method  is  the  direct  time-domain  calculation  of  EM fields  without  prior 
knowledge of modes. The effective modal behavior is an emergent property that results from temporal evaluation of 
the fields.  We intend to introduce noise to the EM field in a way compatible with the FDTD method, namely, 



without invoking the modal picture.  Our goal is  to open a new approach for the study of quantum mechanical 
aspects of radiation in  dynamic macroscopic systems with classical electrodynamics simulations. We believe our 
approach has the potential to permit rigorous theoretical investigations of noise in the area of quantum optics and of 
open systems such as chaotic open cavities. 

2. Numerical Model of Thermal Noise

In the modal picture thermal noise is introduced so that the quantum operator of a leaky cavity mode satisfies 
the commutation relation. For a laser cavity whose loss only comes from the output coupling, the thermal noise is 
attributed to the thermal radiation that penetrates the cavity through the coupling [6]. Thus the amount of thermal 
noise depends on the mode decay rate, which must be known in order to solve the Langevin equation for the field  
operator. 

In FDTD simulations,  light  escaping from an open system is absorbed by the absorbing boundary layer 
(ABL) which acts as the external reservoir. Since it absorbs all impinging fields, the ABL can be modeled as a 
blackbody. To remain in thermal equilibrium with temperature T, the blackbody must radiate into the system. The 
blackbody radiation from the ABL propagates into the cavity and adds as noise to the cavity field. The amount of 
noise penetrating the cavity depends on the cavity openness or output coupling. 

To simulate blackbody radiation, we surround the 1D grid with a series of noise sources  Es(tj) next to the 
grid/ABL interface [7]. These soft sources radiate EM waves into the grid having spectral properties consistent with 
blackbody radiation. The energy density of the blackbody radiation in 1D is 

D  ,T =
ℏ
 c  

expℏ/kT −1  , (1)

where ħ is the reduced Planck constant, k is the Boltzmann constant, and ω is the angular frequency. The temporal 
correlation function of the noise source should be the Fourier transform of D(ω,T). Freilikher et al. have developed a 
quick and straightforward way in the context of random surfaces to generate random numbers for Es(tj) so that these 
correlations are satisfied [8]. The end result takes advantage of the fast Fourier transform and is given by
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where 2M is the total number of time steps,  τsim = 2MΔt is the total simulation time, and ωl  = 2πl/τsim. Ml and Nl  are 
independent Gaussian random numbers of zero mean and a variance of one. Their symmetry properties are Ml = M-l  

and Nl = -N-l. We normalize the energy density to get Dn(|ω|,T) in Eq. (2) so that the integral over ω is 2π. The rms 
amplitude of the noise field δ is adjusted so that the correct EM energy density in vacuum at steady state is achieved, 
i.e., the unnormalized energy density D(|ω|,T). This value is found to be δ2=(1/3є0ħc)(kT)2. Using these parameters 
we have verified the resulting energy density in vacuum to be correct.

To test this model, the field noise in a dielectric slab of length L and refractive index n > 1 is calculated. In a 
good cavity whose lifetime τ is much longer than the coherence time of thermal radiation τc, the average amount of 
thermal noise in one cavity mode agrees with the solution of the quantum Langevin equation under the Markovian 
approximation. In addition to recovering the standard results, our simulations use various values and combinations 
of τ and τc to illustrate the transition from the Markovian regime to the non-Markovian regime. It is demonstrated 
that the buildup of the intracavity noise field depends on the ratio of τc to τ. This result is explained qualitatively by 
the interference effect. 



3. Numerical Model of Spontaneous Emission 

Ziolkowski  et  al. [3]  developed  an  FDTD  algorithm  for  the  Maxwell-Bloch  equations.  They  include 
phenomenological decay rates due to decoherence (1/T2) and excited state's lifetime (1/T1). To advance the algorithm 
they use a predictor-corrector scheme. We also include these decay rates, but our method of solving these equations 
differs. Instead, we adopt a method put forth by Bidégaray,  called the weakly coupled splitting method [9]. The 
main idea is to stagger the electric field E and Bloch vector ρ = ρ1e1+ ρ2e2+ ρ3e3 updates in time thereby decoupling 
the equations and creating a simple leap-frog scheme. We have found this to be quite efficient in our 1D simulations. 
We also choose to simulate  ρ22  =  ρ3 +  ρ11 instead of  ρ3, where  ρ11 and  ρ22 are the ground state and excited state 
population respectively.  The validity of our scheme was tested using the self-induced transparency results from 
Ziolkowski et al. [3]. 

 Decoherence  and the relaxation of  the excited state  should introduce  fluctuations  to  the system.  These 
quantum mechanical fluctuations can be added to these equations by following the work of Drummond and Raymer 
[10]. They derive c-number stochastic equations through the positive-P representation which are equivalent to the 
original  operator  equations  in  the  limit  of  a  large number of  atoms  N.  The  complex  field  at  xj is  αj(t)  and is 
associated with the noise term Fj

α(t). The atomic polarization at cell n at xj of Nn atoms is Jn
+/-(t) and is associated 

with the noise term Fn
J(t). The atomic inversion Jn

z(t) is associated with the noise term Fn
z(t). We show the noise 

terms they derived using their original notation in Eq. (3). 
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where  cκ is  the  modal-intensity  damping rate  due to  background absorbers,  <n> is  the average modal  photon 
number,  g' =  gM1/2,  g is the coupling parameter,  M is the number of grid cells,  γP = (1/T2) – (1/2T1) is the “pure 
dephasing rate,” W12 is the incoherent pumping rate, and σSS is the steady state atomic inversion (-1 in the absence of 
W12). The noise terms F(t) have been reduced to the ξ(t) terms which are δ-correlated independent Gaussian random 
numbers. Fj

α(t) is the fluctuation induced by the decay of the light field to the absorbing background. The first term 
in  Fn

J(t) is the fluctuation due to coupling of the polarization to the light field. The second term in  Fn
J(t) is the 

inversion-dependent classical noise. The last term in Fn
J(t) is the noise due to the pump. The first term under the 

square root in Fn
z(t) is the inversion dependent classical noise. The second term under the square root is from the 

coupling of the polarization to the light field. The third term under the square root and the last term in  Fn
z(t) are 

noise due to the pump.  Each of these terms should be incorporated into the FDTD Maxwell-Bloch equations to 
obtain a more complete description of the laser dynamics. 

Before taking the step of including every noise term of Eq. (3) in the Maxwell-Bloch equations, a simpler 
system is considered to test our model. Maki et al. examine the transition from superfluorescence (SF) to amplified 
spontaneous emission (ASE) [11]. The Fresnel number of the system is kept near unity to ensure the accuracy of a 
1D description. Due to the fluorescence and collisional fluctuations being large enough to dominate the system, the 
nonclassical  noise  terms  in  Eq.  (3)  may  be  dropped.  This  leaves  the  ξn

P(t)[(1/T2)(2Jn
z +  Nn)]1/2 term  for  the 

polarization  and  the  ξn
z(t)[(1/2T1)(Nn  – 2σSSJn

z)]1/2 term  for  the  inversion.  After  some  algebra,  these  inversion-
dependent contributions can be cast into the Maxwell-Bloch formalism described in the previous section. Figure 1 
illustrates the use of our method to examine the transition from SF to ASE in a manner analogous to Fig. 4 in Ref.  
[11]. The gain αL is directly proportional to the dephasing time  T2. Fig. 1(a) shows results for large  T2   bringing 
about strong oscillatory SF. As  T2 decreases, the SF becomes damped as seen in Fig. 1(b). When  T2  is below a 
critical value given by (τrτD)1/2,  where  τr  is the lifetime and  τD the delay time of cooperative emission, there are 
enough collisions to frustrate the cooperative emission. The critical value for the system under study is 16 ps. The 
transition from damped SF to ASE is seen from Fig. 1(c) to Fig. 1(d). The lifetimes and delay times of each of the 
four cases agree well with Ref. [11]. We conclude that we have successfully implemented the desired noise into the 
Maxwell-Bloch equations via FDTD. 



Fig. 1: Output energy of gain region for 3 single realizations (first 3 columns) and an ensemble averaged (using 30 
realizations) result. The parameters used are: L = 7 mm, T1 = 76 ns, N = 3 × 109, λ = 629 nm, and Δx = 70 nm. Case 
(a) shows strong oscillatory SF, (b) damped SF, (c) highly damped SF, and (d) ASE.
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